Optimal selection of orthogonal polynomials applied to the integration of chemical reactor equations by collocation methods
نویسندگان
چکیده
In this paper, we analyse some properties of the orthogonal collocation in the context of its use for reducing PDE (partial differential equations) chemical reactor models for numerical simulation and/or control design. The approximation of the first order derivatives is first considered and analysed with respect to the transfer of the stability properties of the transport component from the PDE model to its approximated ODE (ordinary differential equations) model. Then the choice of the collocation points as zero of Jacobi polynomial is analysed and interpreted as an optimal choice with respect to a weighted norm. Finally, some guidelines for the use of orthogonal collocation are proposed and the results are illustrated on a simulation example. © 2000 Elsevier Science Ltd. All rights reserved.
منابع مشابه
Mathematical modeling of a fixed bed chromatographic reactor for Fischer Tropsch synthesis
In this research, Fischer Tropsch synthesis (FTS) has been modeled in the fixed bed chromatographic reactor for the first time by applying a rather complex dispersed plug flow model for fluid phase and linear driving force (LDF) model for adsorbent. Model equations are dynamic, multi-component, non-linear and heterogeneous including reaction and adsorption simultaneously Complex kinetics fo...
متن کاملComparative study on solving fractional differential equations via shifted Jacobi collocation method
In this paper, operational matrices of Riemann-Liouville fractional integration and Caputo fractional differentiation for shifted Jacobi polynomials are considered. Using the given initial conditions, we transform the fractional differential equation (FDE) into a modified fractional differential equation with zero initial conditions. Next, all the existing functions in modified differential equ...
متن کاملA Numerical Approach for Solving of Two-Dimensional Linear Fredholm Integral Equations with Boubaker Polynomial Bases
In this paper, a new collocation method, which is based on Boubaker polynomials, is introduced for the approximate solutions of a class of two-dimensional linear Fredholm integral equationsof the second kind. The properties of two-dimensional Boubaker functions are presented. The fundamental matrices of integration with the collocation points are utilized to reduce the solution of the integral ...
متن کاملA spline collocation method for integrating a class of chemical reactor equations
. In this paper, we develop a quadratic spline collocation method for integrating the nonlinear partial differential equations (PDEs) of a plug flow reactor model. The method is proposed in order to be used for the operation of control design and/or numerical simulations. We first present the Crank-Nicolson method to temporally discretize the state variable. Then, we develop and analyze the pro...
متن کاملSolving singular integral equations by using orthogonal polynomials
In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000